Invariant Measures and Global Well Posedness for the SQG Equation

نویسندگان

چکیده

We construct an invariant measure $\mu$ for the Surface Quasi-Geostrophic (SQG) equation and show that almost all functions in support of are initial conditions global, unique solutions SQG, depend continuously on data. In addition, we is infinite dimensional, meaning it not locally a subset any compact set with finite Hausdorff dimension. Also, there global have arbitrarily large condition. The measures obtained via fluctuation-dissipation method, is, as limit stochastic SQG carefully chosen dissipation random forcing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant Weighted Wiener Measures and Almost Sure Global Well-posedness for the Periodic Derivative Nls

In this paper we construct an invariant weighted Wiener measure associated to the periodic derivative nonlinear Schrödinger equation in one dimension and establish global well-posedness for data living in its support. In particular almost surely for data in a Fourier-Lebesgue space FL(T) with s ≥ 1 2 , 2 < r < 4, (s − 1)r < −1 and scaling like H 1 2 (T), for small ǫ > 0. We also show the invari...

متن کامل

Global Well-posedness and Scattering for Derivative Schrödinger Equation

In this paper we mainly study the Cauchy problem for the derivative nonlinear Schrödinger equation in d-dimension (d ≥ 2). We obtain some global well-posedness results with small initial data. The crucial ingredients are L e , L ∞,2 e type estimates, and inhomogeneous local smoothing estimate (L e estimate). As a by-product, the scattering results with small initial data are also obtained.

متن کامل

Sharp Global Well-posedness for a Higher Order Schrödinger Equation

Using the theory of almost conserved energies and the “I-method” developed by Colliander, Keel, Staffilani, Takaoka and Tao, we prove that the initial value problem for a higher order Schrödinger equation is globally wellposed in Sobolev spaces of order s > 1/4. This result is sharp.

متن کامل

Global Well-posedness for Periodic Generalized Korteweg-de Vries Equation

In this paper, we show the global well-posedness for periodic gKdV equations in the space H(T), s ≥ 1 2 for quartic case, and s > 5 9 for quintic case. These improve the previous results of Colliander et al in 2004. In particular, the result is sharp in the quartic case.

متن کامل

Global Flows with Invariant Measures for the Inviscid Modified Sqg Equations

Abstract. We consider the family known as modified or generalized surface quasi-geostrophic equations (mSQG) consisting of the classical inviscid surface quasi-geostrophic (SQG) equation together with a family of regularized active scalars given by introducing a smoothing operator of nonzero but possibly arbitrarily small degree. This family naturally interpolates between the 2D Euler equation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archive for Rational Mechanics and Analysis

سال: 2021

ISSN: ['0003-9527', '1432-0673']

DOI: https://doi.org/10.1007/s00205-021-01650-7